24 research outputs found

    On recycled carbon fibre composites manufactured through a liquid composite moulding process

    Get PDF
    The recovery of carbon fibres from waste and end-of-life carbon fibre reinforced plastic materials is both economically lucrative and environmentally necessary. Here, we characterise the physical and mechanical properties of recycled carbon fibre reinforced plastics (rCFRPs) composed of random and oriented non-woven recycled carbon fibre mats that were impregnated with liquid epoxy matrices using a vacuum-infusion set-up. The low areal density and poor compactability of the non-woven mats implied that press-moulding upon impregnation was essential to control laminate thickness and improve fibre content; this may limit the applications of the resulting rCFRPs. Moreover, the press consolidation process is thought to degrade fibre length, and is a likely cause for the lower-than-expected tensile properties of the rCFRPs. Expectedly, the oriented rCFRPs exhibited better tensile and compressive properties than the random rCFRPs. Notably, while the tensile strength of the rCFRPs was only up to 2.5 times better than the matrix, the tensile modulus was 4–10 times enhanced. Through a comparative literature survey, we found that the liquid composite moulded rCFRPs were outperformed by rCFRPs fabricated through other manufacturing processes (e.g. prepregging), particularly those employing high compaction pressures, and utilising long fibres recovered through pyrolysis and chemical processes, rather than the fluidised-bed process. This is the author accepted manuscript. The final version is available from SAGE via http://dx.doi.org/10.1177/073168441562365

    Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement (ADFP) and its effects on permeability

    Get PDF
    Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been introduced into the aerospace industry. Typically, the permeability of the reinforcement is assumed to be constant throughout the dry preform geometry whereas in reality it possesses inevitable uncertainty due to variability in geometry. This uncertainty propagates to the uncertainty of the mould filling and the fill time, one of the important variables in resin injection. It makes characterisation of the permeability and its variability an important task for design of the resin transfer moulding process. In this study, variability of the geometry of a reinforcement manufactured using Automated Dry Fibre Placement is studied. Permeability of the manufactured preforms is measured experimentally and compared to stochastic simulations based on an analytical model and a stochastic geometry model. The simulations showed that difference between the actual geometry and the designed geometry can result in 50% reduction of the permeability. The stochastic geometry model predicts results within 20% of the experimental values

    Objective surface evaluation of fiber reinforced polymer composites

    Full text link
    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.<br /

    A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

    Get PDF
    With increasing turbine size, monitoring of blades becomes increasingly im-portant, in order to prevent catastrophic damages and unnecessary mainte-nance, minimize the downtime and labor cost and improving the safety is-sues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/ pas-sive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and prom-ising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/ limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamina-tion, fiber debonding, crack opening at leading/ trailing edge and ice accre-tion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/ capabilities and disadvantages/ limitations of repre-sented methods are nominated and analyzed

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link

    Hybrid Wind Systems

    No full text
    corecore